617 research outputs found

    Domino Rh-catalyzed hydroformylation–doublecyclization of o-amino cinnamyl derivatives:applications to the formal total syntheses ofphysostigmine and physovenine

    Get PDF
    A parallel, versatile and efficient route to synthesis of pyrrolidinoindoline and tetrahydrofuranoindoline alkaloids from cinnamyl derivatives has been developed, featuring a domino Rh-catalyzed hydroformylation–double cyclization sequence. This method can be applied to the syntheses of anti-Alzheimer drugs such as physostigmine and physovenine

    Evolution of long centromeres in fire ants

    Get PDF
    Background: Centromeres are essential for accurate chromosome segregation, yet sequence conservation is low even among closely related species. Centromere drive predicts rapid turnover because some centromeric sequences may compete better than others during female meiosis. In addition to sequence composition, longer centromeres may have a transmission advantage. Results: We report the first observations of extremely long centromeres, covering on average 34 % of the chromosomes, in the red imported fire ant Solenopsis invicta. By comparison, cytological examination of Solenopsis geminata revealed typical small centromeric constrictions. Bioinformatics and molecular analyses identified CenSol, the major centromeric satellite DNA repeat. We found that CenSol sequences are very similar between the two species but the CenSol copy number in S. invicta is much greater than that in S. geminata. In addition, centromere expansion in S. invicta is not correlated with the duplication of CenH3. Comparative analyses revealed that several closely related fire ant species also possess long centromeres. Conclusions: Our results are consistent with a model of simple runaway centromere expansion due to centromere drive. We suggest expanded centromeres may be more prevalent in hymenopteran insects, which use haplodiploid sex determination, than previously considered

    Asteroid Spin-Rate Study using the Intermediate Palomar Transient Factory

    Get PDF
    Two dedicated asteroid rotation-period surveys have been carried out using data taken on January 6-9 and February 20-23 of 2014 by the Intermediate Palomar Transient Factory (iPTF) in the RR~band with 20\sim 20-min cadence. The total survey area covered 174~deg2^2 in the ecliptic plane. Reliable rotation periods for 1,438 asteroids are obtained from a larger data set of 6,551 mostly main-belt asteroids, each with 10\geq 10~detections. Analysis of 1751, PTF based, reliable rotation periods clearly shows the "spin barrier" at 2\sim 2~hours for "rubble-pile" asteroids. We also found a new large-sized super-fast rotator, 2005 UW163 (Chang et al., 2014), and other five candidates as well. Our spin-rate distributions of asteroids with 3<D<153 < D < 15~km shows number decrease when frequency greater than 5 rev/day, which is consistent to that of the Asteroid Light Curve Database (LCDB, Warner et al., 2009) and the result of (Masiero et al., 2009). We found the discrepancy in the spin-rate distribution between our result and (Pravec et al., 2008, update 2014-04-20) is mainly from asteroids with Δm<0.2\Delta m < 0.2 mag that might be primarily due to different survey strategies. For asteroids with D3D \leq 3~km, we found a significant number drop at f=6f = 6 rev/day. The YORP effect timescale for small-sized asteroid is shorter that makes more elongate objets spun up to reach their spin-rate limit and results in break-up. The K-S test suggests a possible difference in the spin-rate distributions of C- and S-type asteroids. We also find that C-type asteroids have a smaller spin-rate limit than the S-type, which agrees with the general sense that the C-type has lower bulk density than the S-type.Comment: Submitted to ApJ (Jan, 2015). Accepted by ApJ (June, 2015). The whole set of the folded lightcurves will be available on the published articl

    Pair-density wave signature observed by x-ray scattering in La-based high-TcT_{\rm c} cuprates

    Full text link
    Suggestive, but indirect evidence of the existence of pair-density wave (PDW) order in several high-TcT_{\rm c} cuprates has been reported. As this constitutes a new quantum phase of matter, it is important to {\it establish} its existence at least somewhere in the phase diagram. However, a direct correspondence between experiment and theory has remained elusive. Here, we report the observation of a theoretically predicted PDW {\it bulk} signature in two La-based cuprates, Sr-doped La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and Fe-doped La1.87_{1.87}Sr0.13_{0.13}CuO4_4, through a comprehensive study that incorporates zero-magnetic field x-ray scattering, neutron scattering, and transport measurements. Specifically, we observe the emergence of so-called "1Q" order, which is to say subharmonic order associated with the charge-density wave (CDW) stripes, in a range of temperatures in which independent evidence suggests the co-existence of PDW long-range order and fluctuating uniform superconducting order. The subharmonic order is most pronounced around a half-integer ll-vector, where the CDW diffraction peak is also strongest. This is consistent with the theoretical proposal that the cancellation of the Josephson coupling ("layer-decoupling"), is a signature of PDW order and that it is commensurately locked to the density wave stripes that are known to alternate orientation between adjacent layers. Even if the PDW is not the "mother of all state", it is at least a close relative -- possibly a second cousin

    313 new asteroid rotation periods from Palomar Transient Factory observations

    Get PDF
    A new asteroid rotation period survey have been carried out by using the Palomar Transient Factory (PTF). Twelve consecutive PTF fields, which covered an area of 87 deg2^2 in the ecliptic plane, were observed in RR band with a cadence of \sim20 min during February 15--18, 2013. We detected 2500 known asteroids with a diameter range of 0.5 km D\leq D \leq 200 km. Of these, 313 objects had highly reliable rotation periods and exhibited the "spin barrier" at 2\sim2 hours. In contrast to the flat spin rate distribution of the asteroids with 3 km D\leq D \leq 15 km shown by Pravec et al. (2008), our results deviated somewhat from a Maxwellian distribution and showed a decrease at the spin rate greater than 5 rev/day. One super-fast-rotator candidate and two possible binary asteroids were also found in this work.Comment: 18 pages, 20 figures and 2 very long table

    Analgesic and Anti-Inflammatory Activities of Methanol Extract of Ficus pumila L. in Mice

    Get PDF
    This study investigated possible analgesic and anti-inflammatory mechanisms of the methanol extract of Ficus pumila (FPMeOH). Analgesic effects were evaluated in two models including acetic acid-induced writhing response and formalin-induced paw licking. The results showed FPMeOH decreased writhing response in the acetic acid assay and licking time in the formalin test. The anti-inflammatory effect was evaluated by λ-carrageenan-induced mouse paw edema and histopathological analyses. FPMeOH significantly decreased the volume of paw edema induced by λ-carrageenan. Histopathologically, FPMeOH abated the level of tissue destruction and swelling of the edema paws. This study indicated anti-inflammatory mechanism of FPMeOH may be due to declined levels of NO and MDA in the edema paw through increasing the activities of SOD, GPx, and GRd in the liver. Additionally, FPMeOH also decreased the level of inflammatory mediators such as IL-1β, TNF-α, and COX-2. HPLC fingerprint was established and the contents of three active ingredients, rutin, luteolin, and apigenin, were quantitatively determined. This study provided evidence for the classical treatment of Ficus pumila in inflammatory diseases
    corecore